
Performance Efficient DNA Sequence Detection on
GPUUsing Parallel Pattern Matching Approach

Rahul Shirude1

Valmik B. Nikam2

B.B. Meshram3

1, 2, 3 Department of Computer Engineering and Information Technology

Veermata Jijabai Technological Institute
Mumbai, India

Abstract— Bioinformatics is THE field of science which
applies computer science and information technology to the
problems of biological science. One of the most useful
applications of bioinformatics is sequence analysis. Sequence
analysis, which is the process of subjecting a DNA, RNA to
any wide range of analytical approaches, involves
methodologies like sequence alignment and searches against
biological databases. For the analysis DNA sequences are
stored in databases for easy retrieval and comparison.
Frequency of pattern occurrence in database may predict the
intensity of the disease. When the sequence database is huge,
matching a pattern is very time consuming task. This fact
leads to the need of utilizing latest complex and expensive
hardware like GPU.
In this paper, we propose a Parallel string matching
algorithm using CUDA (Compute Unified Device
Architecture). The focus of the research is the design and
implementation of an algorithm by utilizing GPU cores
optimally. Our algorithms finds correct matches and
experimental results show very high performance gain over
the sequential approach.

Keywords— Bioinformatics; Matching; Pattern; DNA
sequence; Sequence Analysis;CUDA.

I. INTRODUCTION

As the growth rate of biological sequence databases
increased, the demand for advanced and high performance
computational method for comparing and searching
biological sequences have also increased. In DNA
sequence alignment [14], the performance of comparison
and alignment affect a lot of application processes such as
vaccines design, drugs, disease detection and curing
method. Hence with the high performance and high
sensitivity DNA sequences alignment or comparison the
vaccines, drugs, disease detection and disease curing
method can be designed and defined in a faster way. To
satisfy this need, high performance and sensitive DNA
sequence matching algorithms are very important for
research and application of molecular biology today.
Biological sequence alignment is a computationally
expensive application in the field of bioinformatics and
computational biology as its computing and memory
requirements grow quadratic ally with the size of the
databases. It aims to find out whether two or more
biological sequences are related or not.
The problem of exact string matching is to find all
occurrences of pattern 'P' of size 'm' in the text string 'T' of
size 'n'. Let P = {p1, p2, p3 ,….,pm} be a set of patterns of
m characters and T={t=t1,t2,t3…,tn} in a text of n

characters which are strings of nucleotide sequence
characters from a fixed alphabet set called Σ= {A, C, G,
T}[2]. Let T be a large text consisting of characters in Σ. In
other words T is an element of Σ*. The problem is to find
all the occurrences of pattern P in text T. It is an important
application widely used in data filtering to find selected
patterns, in security applications, and is also used for DNA
searching[1].Pattern matching focuses on finding the
occurrences of a particular pattern in a text file. The
problem in pattern discovery is to determine how often a
candidate pattern occurs, as well as possibly some
information on its frequency distribution across the
sequence/text. In general, a pattern will be a description of
a set of strings, each string being a sequence of symbols.
Hence, given a pattern, it is usual to ask for its frequency,
as well as to examine its occurrences in a given
sequence/text. The biologists often queries new
discoveries against a collection of sequence databases such
as EMBL[22], GENBANK[15] and DDBJ[16] to find the
similarity sequences. As the size of the data grows it
becomes more difficult for users to retrieve necessary
information from the sequences. Hence more efficient and
robust methods are needed for fast pattern matching
techniques. We have proposed an accelerated approach of
string and pattern matching algorithms to find out a
particular sequence or pattern in the given DNA database
using parallel programming approach. This can be
accomplished by parallelization technique on GPU using
CUDA programming model. Pattern matching algorithms
have main objectives such as:
Design and implement sequential algorithm for pattern
matching for DNA sequence analysis.
To parallelize the developed sequential algorithm.
To analyze the scalability and optimizing accordingly.
The rest of the paper is organized as follows; Section II is
Literature survey, Section III is Proposed Approach,
Section IV is Experimental System Requirements and we
make some concluding remarks in Section V.

II. LITERATURE SURVEY

A. Study of pattern matching algorithms

The literature describes various traditional pattern
matching methodologies like Naive Brute force, Boyer
Moore, Knuth Morris Pratt and Dynamic algorithms along
with their performance issues when applied for sequence
analysis. Pattern matching is used in various processes like
DNA sequencing, Intrusion Detection System.

Rahul Shirude et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5380-5385

www.ijcsit.com 5380

 1) Naive Brute force
It is one of the simplest algorithms having complexity
O(mn). In this, First character of pattern P(with length m)
is aligned with first character of text T (with length
n).Then scanning is done from left to right. As shifting is
done at each step it gives less efficiency. [17]

 2) Boyer-Moore Algorithm
It performs larger shift-increment whenever mismatch is
detected. It differs from Naïve in the way of scanning. It
scans the string from right to left; unlike Naive i.e. P is
aligned with T such that last character of P will be matched
to first character of T. If character is matched then pointer
is shifted to left to very rest of the characters of the pattern.
If a mismatch is detected at say character c, in T which is
not in P, then P is shifted right to m positions and P is
aligned to the next character after c. If c is part of P, then P
is shifted right so that c is aligned with the right most
occurrence of c in P. The worst complexity is still O (m+n)
[11].

 3) Knuth-Morris-Pratt
This algorithm is based on automaton theory. Firstly a
finite state automata model M is being created for the
given pattern P. The input string T with Σ= {A, C, T, G} is
processed through the model. If pattern is present in text,
the text is accepted otherwise rejected. But the only
disadvantage of the KMP algorithm [3] is that it doesn’t
tell the number of occurrences of the pattern[12].

 4) Dynamic programming Algorithms
Dynamic programming is the oldest and mostly used
algorithm. Basically Needleman Wunsch and Smith
waterman algorithm[18] come under this approach. These
are much more complex than the exact pattern matching. It
involved solving successive recurrence relations
recursively i.e. smaller problems are solved in succession
to solve the main problem.

a)Smith-Waterman (local alignment)[18]
• Accuracy: good with gapped pairs
• Processing: Computationally expensive O (N2) and with
trace-back a lot of memory is required; this is slow
• Limitations: indexing to find targets is required.

 b)Needleman-Wunsch (global alignment)[18]
• Good for small genomes and long matching alignments
• Processing: Computationally expensive O (N2) Talk
today showed novel pruning technique for in large
matches.
• Limitations: requires hard left hand bound known query
and target size.

B. Related work

 1)Existing programs on CPU
• BWA [6]
• BFAST[7]
• Mosaik[8]
• BLAST[9]

Problem with existing programs is that they are slow, less
accurate, And/or require large memory. Expensive
hardware is required to run these programs. Cheaper
hardware is more desirable. So GPUs are a good
alternative.

 2)Current GPU based tools
a) Smith-Waterman implementations

 CUDASW++: is a bioinformatics software for
Smith-Waterman protein database searches that
takes advantage of the massively parallel
architecture of GPUs to perform sequence
searches. It has drawback as it deals only with
protein sequence alignment only[19].

 SeqNFind: The SeqNFind Smith Waterman tool
allows examination of local alignments at every
location within a genome. It has some drawback
as it is Commercial and Need to buy along with
hardware[13].

 MuMmerGPU: is a high-throughput DNA
sequence alignment program that runs on Nvidia
G80-class GPUs. It aligns sequences in parallel on
the video card to accelerate the widely used serial
CPU program MuMmer. It shows no gapped
alignment[20].

C. GPU/CUDA Architecture

CUDA architecture is different from the general computer
system. To choose better architecture is important for
improving performance. Multiple GPUs also can be
utilized for high performance gain [10]. As we consider
hardware architecture of CUDA supported GPU’s, SM
(Streaming Multiprocessor) is used for thread execution.
Each SM contains 8, 16 or 96 stream processors and
support up to 8 or 16 blocks of concurrently executing
threads. Warp contains number of threads in a block that
executes simultaneously. Each SM manages a number of
specified warps; therefore the maximum number of threads
in a SM is number of warps multiplied by number of
threads.[23] Blocks are grouped into grids; the kernel
function executes grids of blocks of threads. For accessing
global memory from GPU require longer access latency.
To avoid this longer latency a portion of global memory
can be bound as a texture memory which is used for
catching and occurs when cache miss occurs. Usually
texture memory has good performance than global
memory. GPU platform also supports some fast memory.
One of that is constant memory which is read only memory
and is used for catching. Another memory is shared
memory which is owned by each SM and performs both
read and writes operations [4]. Figure.1. shows the
memory structure of the CUDA[5].

Rahul Shirude et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5380-5385

www.ijcsit.com 5381

 Fig. 1. CUDA memory model

Shared memory is the memory located on multiprocessors
of the device itself and is shared by all threads of a thread
block. This is the memory which can be accessed by both
host and device. The data which is stored in main memory
must be copied from main memory to global memory by
using CUDA memory copy functions, if it should be
accessed by device. All the threads have its local memory.
General global memory is available up to 6 GB per GPU
having bandwidth up to 180 GB/s for the Tesla products. If
the data is read only data and if the space is not available
for storing the data then the texture memory is used for this
purpose. In constant memory constants are immutable and
not be written by kernel, even in dynamic parallelism
kernel launches. Constant memory variables are globally
visible to all kernels. Texture memory access and writes to
global memory object that relates with texture memory
objects between parent and children.

1) Thread Hierarchy:

For convenience, threadIdx is a 3-component vector, so
that threads can be identified using a one-dimensional,
two-dimensional, or three-dimensional thread index,
forming a one-dimensional, two-dimensional, or three-
dimensional thread block. This provides a natural way to
invoke computation across the elements in a domain such
as a vector, matrix, or volume. The index of a thread and
its thread ID relate to each other in a straightforward way:
For a one-dimensional block, they are the same; for a two-
dimensional block of size (Dx, Dy),the thread ID of a thread
of index (x, y) is (x + y Dx); for a three-dimensional block
of size (Dx, Dy, Dz), the thread ID of a thread of index (x, y,
z) is(x + y Dx + z Dx Dy).There is a limit to the number of
threads per block, since all threads of a block are expected
to reside on the same processor core and must share the
limited memory resources of that core. On current GPUs, a
thread block may contain up to 1024 threads. However, a
kernel can be executed by multiple equally-shaped thread
blocks, so that the total number of threads is equal to the

number of threads per block times the number of blocks.
Blocks are organized into a one-dimensional, two-
dimensional, or three-dimensional grid of thread blocks as
illustrated by Figure 2. The number of thread blocks in a
grid is usually dictated by the size of the data being
processed or the number of processors in the system, which
it can greatly exceed.

 Fig.2. Grid of Thread Blocks

Each block within the grid can be identified by a one-
dimensional, two-dimensional, or three-dimensional index
accessible within the kernel through the built
in blockIdx variable. The dimension of the thread block is
accessible within the kernel through the built
in blockDim variable.

III. PROPOSED APPROACH

In order to apply the maximum level of parallelization and
to improve performance, a brute force method is chosen to
test the parallel approach. This approach is applied for the
process of disease diagnosis by matching input gene
pattern with DNA database text file and draw conclusions
from number of occurrences or matching of input gene
pattern. There are some objectives to be followed for
completion of research and these objectives are as follows:

 Analyse different serial algorithms for pattern
matching and their performance ratios.

 Build scalable parallel pattern matching algorithm
for DNA sequencing.

 Measure the GPU and CPU performance
differences in terms of processing time and
generate resultant graph. Various input gene
patterns are match with DNA database file and
verified according to count of occurrences of
pattern into DNA database file. Threads are run
according to size of database file.

Rahul Shirude et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5380-5385

www.ijcsit.com 5382

A. Naive Brute Force String Matching Algorithm:

Naive Brute Force String Matching Algorithm is a basic
algorithm that takes a string S, of size n, and a pattern P, of
size m, and scans the first n-m elements of the string from
left to right with the pattern, looking for matches. Basically
the algorithm considers all the possible starting positions
of the pattern(P) for j=0 to n-m. Then for every starting
position (j) the pattern(P) must exactly match S for the
next consecutive m-1 positions. The result of the
algorithm is the set I containing all of the starting positions
in S where P exactly matches the string S(using indices
starting at 1)[21].
As an example consider P=aba and S=acbababa, which
has the following iterations in the Naïve String Matching
Algorithm:

P=aba , S=acbababa
Iterations:

j=0 acbababa j=1 acbababa
aba aba

j=2 acbababa j=3 acbababa

aba aba

j=4 acbababa j=5 acbababa
aba aba

The output from the Naive String Matching Algorithm
would be the set I={3+1,5+1}={4,6}(note the plus 1
results from sequence indexes starting at 1 not 0) since for
all other values of j the pattern P did not match exactly.
The sequential form of algorithm consists of function,
where it attempts to match pattern of text by scanning text
from left to right. In sequential code, a single thread is
conducting the search and when it finds a match the
algorithm will output to console the position it was found.
In CUDA version, N threads could be conducting the same
search. Each of the N threads attempt to scan for a match
of the text, in parallel and when it discovers a match an
array for storing the found indices will be updated. Each
CUDA thread can potentially and possibly read each
character and obtain a match , in the event that the pattern
follows one another in string

B. Proposed Model

CUDA is a parallel computing architecture developed by
NVIDIA. The aim is to provide a programming framework
for general purpose computations on Graphics Processing
Units. CUDA programming model assumes that each
CUDA thread has its own local memory and is running on
one of the stream processors of the GPU multiprocessor
sharing on-chip memory with the other threads running on
the multiprocessor.
The suggested parallel computational model uses pattern
matching algorithm distributed between the threads of the
GPU kernels. Each thread calculates the matching of input
pattern with stored database file (character array). The flow
chart is given in Figure 3.

 Fig. 3 Flow Chart

 Fig.4. Architectural model

Rahul Shirude et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5380-5385

www.ijcsit.com 5383

The proposed (Architectural) model shown in Figure 4
include following modules:

 Main module(DnaGpu.c) in C
 Kernelcode (Searchkeyword_kernel.cu) using

CUDA.
Main module (DnaGpu.c) does file handling operations
and also calling of the kernel function. The database file is
first stored into the character Array. And index of array
shows size of database text file. The database text array
and input pattern is passed to GPU device as well as size of
database file is passed to GPU for processing. Numbers of
threads passed to kernel are equals to size of text array
passed to GPU. So each thread does processing parallel
with input pattern and calculates number of occurrences of
pattern in database text file. Then passed output in the form
of total no. of matching to Host (CPU).

C. Flow Chart

At the very beginning of the CUDA code’s execution, code
is compiled just like other c code. Its primary execution
takes place in CPU.As the execution started all non-kernel
functions getting executed on CPU and the execution of
kernel code is being transferred to GPU. This way we get
parallel execution on CPU and GPU. Once the memory
transfer between CPU to GPU is done, without any
impediments the rest of the execution is carried well
otherwise execution will be halted. Pattern matching gives
out the search results for presence of specific input pattern
in DNA sequence database. The simplest brute force
technique is used for the matching so as to cope up with
complexity and to prevent possible overhead occurring due
to parallelization. In order to reduce searching time
matching is carried out parallel that reduces the search time
with accurate retrieval. Data is collected from well-known
database NCBI and other genome projects.

IV. EXPERIMENTAL SYSTEM REQUIREMENTS

A. Experimental System Requirements

Experiments were performed on the machine with Intel
Xeon E5-2650 processor and Nvidia Tesla K20 GPU. The
Nvidia Tesla K20 graphics processing unit (GPU) active
board is PCI Express, comprising of a single GK 110 GPU.
The Tesla K20 active accelerator is designed for
workstation and offer total of 5 GB GDDR-5 on-board
memory and supports PCI Express Gen2. The Tesla K20
GPU has 2496 processor cores and also has 3.52 Teraflops
single and 1.17 Teraflops double precession floating point
units. Nvidia profiler is used to measure kernel execution
time and data transfer time. The GTX titan graphics card
has the following features:-

‐ Compute capability - 3.5.
‐ Threads per block - 1024.
‐ Shared memory per block - 48KB.
‐ Registers per block - 65536.
‐ Warps per multiprocessor - 64.
‐ Blocks per multiprocessor - 16.
‐ Global memory bandwidth - 275.02 GB/s / size=

5.99GB.
‐ Constant memory ‐ 64KB.

V. CONCLUSION

In this paper we have implemented an efficient parallel
Pattern Matching Algorithm by utilizing GPU cores
optimally on CUDA. The proposed technique enhances the
comparison time and performance when compared with
sequential approach of algorithm on CPU. From the
obtained results, that means from count of number of
occurrences of given pattern in DNA database file we can
conclude that whether an individual has chances of
getting disease or not in future. The research has been done
On GPU using CUDA programming model, accelerating
the pattern matching process. The proposed algorithm will
take advantages of parallel computing and give better time
and money saving approach for disease detection. Our
algorithms finds correct matches and experimental results
show very high performance gain over the sequential
approach.

REFERENCES
[1] Bhukya R., Somayajulu DVLN, “Exact multiple pattern matching

algorithm using DNA sequence and pattern pair”, International
Journal of Computer Applications (0975 – 8887) Volume 17– No.8,
March 2011

[2] Bhukya R., Somayajulu DVLN, “2-Jump DNA Search Multiple
Pattern Matching Algorithm”, IJCSI International Journal of
Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011.

[3] S. Rajesh , S.Prathima, Dr.L.S.S.Reddy, “Unusual Pattern
Detection in DNA Database Using KMP Algorithm”,2010
International Journal of Computer Applications(0975-8887) Volume
1 – No.22

[4] http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[5] Kirk,D., Hwu,W.,” Programming Massively Parallel Processor”
second edition.

[6] Heng Li., Richard Durbin “Fast and accurate short read alignment
with Burrows–Wheeler Transform ” Vol. 25 no. 14 2009, pages
1754–1760 doi:10.1093/bioinformatics/btp324 May,2009

[7] Homer N, Merriman B, Nelson SF (2009) “ BFAST: An Alignment
Tool for Large Scale Genome Resequencing.” PLoS ONE 4(11):
e7767. doi:10.1371/journal.pone.0007767

[8] Lee W-P, Stromberg MP, Ward A, Stewart C, Garrison EP, et al.
(2014) “MOSAIK: A Hash-Based Algorithm for Accurate Next-
Generation Sequencing Short-Read Mapping.” PLoS ONE 9(3):
e90581. doi:10.1371/journal.pone.0090581

[9] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myres,
David J. Lipman “Basic local alignment search tool” Journal of
Molecular Biology Volume 215,Issue 3,5 October 1990,Pages 403-
410 DOI:10.1016/S0022-2836(05)80360-2

[10] Urvesh Devani, V. B. Nikam, B.B. Meshram (2014) “On the fly
Porn Video Blocking using Distributed Multi-GPU and Data Mining
Approach”, International Journal of Distributed and Parallel
Systems, July 2014.

[11] R.S. Boyer, J.S. Moore, "A fast string searching algorithm,"
Communication of the ACM, Vol. 20, No. 10, 1977, pp.762–772.

[12] KNUTH, D. E, MORRIS JR J. H , PRATT V. R,”Fast pattern
matching in strings”, In the procd. Of SIAM J.Comput.Vol. 6, 1, pp.
323–350, 1977

[13] http://www.atlab.com/docs/ATLSeqNFinddatasheet.pdf

[14] Mount D. Bioinformatics: Sequence and Genome Analysis, Cold
Spring Harbor Laboratory(CSHL) Press,2004.

[15] http://www.ncbi.nlm.nih.gov/genbank

[16] http://www.ddbj.nig.ac.jp

[17] http://codeaspirant.wordpress.com/2013/05/20/brute-force-naive-
approach-to-string-searching

[18] http://fenchurch.mc.vanderbilt.edu/lab/bmif310/2012/2-D-
Comparing-Sequences-NW-and-SW.pdf

[19] http://cudasw.sourceforge.net/homepage.htm#latest

[20] http://www.biomedcentral.com/1471-2105/8/474

Rahul Shirude et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5380-5385

www.ijcsit.com 5384

[21] Parida, Laxmi (2008) Pattern Discovery in Bioinformatics: Theory
& Algorithms Boca Raton: Chapman & Hall/CRC pg. 139-
182,183-212

[22] Stoesser, G., Baker, W., van den Broek, A.E., Camon,E.,
Hingamp,P., Sterk,P. and Tuli,M.A.(2000) The EMBL Nucleotide
Sequence Database. Nucleic Acids Res., 28, 19–23

[23] Sangale,A.,Devani,U.,Nikam,V.,Meshram,B.,”Implementing
Adaptiv and Dynamic Data Structures using CUDA
Parallelism”,ICAETR ,2014IEEE International Conference on
,Auguest 1-2 ,2014.

AUTHOR’S INFORMATION

Rahul R. Shirude is Bachelor of Engineering
(Computer Engineering) from University of Pune, Pune
and pursuing his Master of Technology in Information
Technology (with specialization in Software
Engineering) from VJTI, Matunga, Mumbai,
Maharashtra state. He is working on “Parallel approach
of String and Pattern matching algorithm in

Bioinformatics on GPU using CUDA” for as a part of his thesis. He has
been a part of various technical workshops and research meet ups as a
student and also as a committee member. His research interests include
Parallel Processing, High Performance Computing, Mobile Computing
and Cloud Computing,. He worked as a Technical Officer for CSI Event
‘Tantranaad’ held at VJTI. He has also completed certification in cloud

computing i.e.Salesforce.com (Dev-401).

Valmik B Nikam is Bachelor of Engineering
(Computer Science and Engineering) from Government
College of Engineering Aurangabad, Master of
Engineering (Computer Engineering) from VJTI,
Matunga, Mumbai, Maharashtra state, and pursuing PhD
in Computer Department of VJTI. He was faculty at Dr.

Babasaheb Ambedkar Technological University, Lonere. He has 12 years
of academic experience and 5 years of administrative experience as a
Head of Department. He has one year of industry experience. He has
attended many short term training programs and has been invited for
expert lectures in the workshops. Presently he is Associate Professor at
deparment of Computer Engineering & Information Technology of VJTI,
Matunga, Mumbai. His research interests include Scalability of Data
Mining Algorithms, Data Warehousing, Big Data, Parallel Computing,
GPU Computing, Cloud Computing. He is member of CSI, ACM, IEEE
research organizations, and also a life member of ISTE. He has been
felicitated with IBM-DRONA award in 2011.

B.B.Meshram is a Professor and Head of Department
of Computer Engineering and Information
Technology, Veermata Jijabai Technological Institute,
Matunga, Mumbai. He is Ph.D. in Computer
Engineering. He has been in the academics & research
since 20 years. His current research includes database

technologies, data mining, securities, forensic analysis, video processing,
distributed computing. He has authored over 203 research publications,
out of which over 38 publications at National, 91 publications at
international conferences, and more than 71 in international journals, also
he has filed two patents. He has given numerous invited talks at various
conferences, workshops, training programs and also served as chair/co-
chair for many conferences/workshops in the area of computer science
and engineering. The industry demanded M.Tech program on Network
Infrastructure Management System, and the International conference
“Interface” are his brain childs to interface the industry, academia &
researchers. Beyond the researcher, he also runs the Jeman Educational
Society to uplift the needy and deprived students of the society, as a
responsibility towards the society and hence the Nation.

Rahul Shirude et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5380-5385

www.ijcsit.com 5385

